Density Estimation on the rotation group using Diffusive wavelets

نویسندگان

  • Nicolas Le Bihan
  • Julien Flamant
  • Jonathan H. Manton
چکیده

This paper considers the problem of estimating probability density functions on the rotation group SO(3). Two distinct approaches are proposed, one based on characteristic functions and the other on wavelets using the heat kernel. Expressions are derived for their Mean Integrated Squared Errors. The performance of the estimators is studied numerically and compared with the performance of an existing technique using the De La Vallée Poussin kernel estimator. The heat-kernel wavelet approach appears to offer the best convergence, with faster convergence to the optimal bound and guaranteed positivity of the estimated probability density function. Index Terms Probability density estimation, Rotation group SO(3), Diffusive wavelets, Characteristic function, Kernel estimators, Mean Integrated Square Error (MISE), Mixture of densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses

We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

Linear Wavelet-Based Estimation for Derivative of a Density under Random Censorship

In this paper we consider estimation of the derivative of a density based on wavelets methods using randomly right censored data. We extend the results regarding the asymptotic convergence rates due to Prakasa Rao (1996) and Chaubey et al. (2008) under random censorship model. Our treatment is facilitated by results of Stute (1995) and Li (2003) that enable us in demonstrating that the same con...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

On the Usefulness of Meyer Wavelets for Deconvolution and Density Estimation

The aim of this paper is to show the usefulness of Meyer wavelets for the classical problem of density estimation and for density deconvolution fromnoisy observations. By using such wavelets, the computation of the empirical wavelet coefficients relies on the fast Fourier transform of the data and on the fact that Meyer wavelets are band-limited functions. This makes such estimators very simple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015